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Abstract
This paper explores the application of contrastive learning to estimate clinical sentence similarity in the domain of
medical question answering systems. The goal is to improve the accuracy and reliability of automated tools that
respond to complex questions posed by healthcare professionals, clinical researchers, and patients. By focusing
on sentence-level embeddings within clinical text corpora, our approach emphasizes the subtle linguistic cues
and domain-specific contextual factors that determine semantic similarity in medical dialogues. We present a
robust framework that leverages a contrastive objective to maximize the alignment between semantically related
sentences while preserving essential distinctions among dissimilar examples. Additionally, we incorporate advanced
representation learning techniques and rigorous optimization strategies to enhance the encoding of nuanced medical
terminology. This paper addresses several core challenges: capturing long-range dependencies in clinical discourse,
handling synonyms and abbreviations common to the healthcare domain, and mitigating the impact of noisy
electronic health records on model performance. Our results show that a carefully designed contrastive learning
pipeline yields significantly higher similarity estimation accuracy than standard sentence embedding baselines,
with notable improvements in precision for semantically complex queries. We also provide a theoretical perspective
on the relationship between contrastive objectives and the underlying geometry of sentence embeddings. Finally,
we discuss the implications of our findings for broader clinical text mining applications.

1. Introduction

The emergence of large-scale medical text repositories, including electronic health records, scientific
publications, and patient-generated content, has created a burgeoning need for computational methods
that can efficiently parse, interpret, and analyze such materials [1]. Medical question answering systems
have consequently evolved into highly specialized tools that can support evidence-based practice,
enhance clinical decision-making, and enable self-directed patient education [2]. Central to many of
these systems is the core task of sentence similarity estimation, whereby a query, often expressed in
colloquial or semi-technical language, must be matched to the most relevant text in a medical knowledge
base. However, the clinical domain presents unique semantic and pragmatic challenges: for example,
medical texts often feature specialized abbreviations, domain-specific jargon, and regionally variable
expressions [3]. These factors complicate the mapping from query sentences to their most appropriate
answers, making robust methods for sentence similarity estimation indispensable.

The present work proposes a contrastive learning approach designed to capture intricate semantic
relationships among sentences that arise in clinical contexts [4]. By harnessing a contrastive objective,
the framework systematically aligns pairs of sentences that convey similar medical concepts while
ensuring that irrelevant or dissimilar sentences remain appropriately differentiated in the embedding
space. If 𝑠1 and 𝑠2 denote two clinically coherent expressions, the objective seeks to minimize a metric
𝑑 (h(𝑠1), h(𝑠2)), where h is the encoding function that maps textual inputs to vectors in R𝑛. For any
pair of unrelated sentences 𝑠3 and 𝑠4, the objective likewise maximizes 𝑑 (h(𝑠3), h(𝑠4)) to maintain
a clear semantic boundary. In medical discourse, seemingly small lexical or syntactic differences can
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drastically alter meaning (for instance, distinguishing “Type I diabetes” from “Type II diabetes”) [5].
Thus, the geometry of the embedding space must be keenly sensitive to these distinctions, yet tolerant
of equivalent or near-equivalent phrasings that hinge on variations in clinical syntax.

The utility of sentence similarity estimation in medical question answering systems is multi-fold [6]. It
can facilitate more responsive and context-aware query expansions, refine document retrieval pipelines,
and yield improved precision in identifying authoritative medical content for end users. Robust sentence
similarity methods can also expedite the creation of clinical knowledge graphs [7], which demand
consistent and reliable mappings between semantically related entities [8]. For instance, let 𝑄𝑖 represent
a query about medication side effects and 𝐶 𝑗 a corpus sentence describing drug contraindications. A
similarity function Sim(𝑄𝑖 , 𝐶 𝑗 ) can serve as the backbone of a retrieval system that directs a clinician
to information on adverse events and recommended courses of action.

Despite significant strides in natural language processing, there remain numerous domain-specific
hurdles [9]. Clinical texts often contain unstructured data peppered with typographical errors and partial
forms of relevant medical terms. The variability in abbreviations, such as “BP” for blood pressure versus
“BP” for bipolar disorder, necessitates a representation technique that adeptly handles polysemy [10].
The introduction of advanced large language models has been transformative in many general domains
but can yield unpredictable results in specialized domains like healthcare if not properly adapted. Domain
adaptation typically requires substantial in-domain pretraining on medical corpora, such that the model’s
parameters capture the nuance of medical language [11]. The complexity is further compounded by
privacy constraints that often limit the dissemination of patient records needed for training high-capacity
models.

In light of these challenges, the contrastive learning paradigm offers a promising avenue [12]. When
provided with pairs of sentences known to be semantically close (for instance, a medical question and
its corresponding expert answer), a contrastive learner updates its parameters to bring these sentences
closer in the embedding space. Conversely, unrelated or misleading pairs are pushed farther apart [13].
Formally, if we define a set of labeled pairs {(𝑠+

𝑖
, 𝑠−
𝑖
)}, where 𝑠+

𝑖
are semantically matching sentences

and 𝑠−
𝑖

are randomly sampled non-matching sentences, the training objective is typically expressed as
a margin-based or log-based contrastive loss. A margin-based loss might take the form∑︁

𝑖

max
(
0, 𝛼 + 𝑑 (h(𝑠+𝑖 ), h(𝑠−𝑖 )) − 𝑑 (h(𝑠+𝑖 ), h(𝑠+𝑖 ))

)
,

where 𝛼 denotes a pre-specified margin and 𝑑 (·, ·) is a distance function, often the Euclidean or cosine
distance in a high-dimensional embedding space [14]. Such loss functions enforce a separation between
positive and negative pairs. Log-based forms like the InfoNCE loss further incorporate normalization
terms that facilitate gradient-based optimization in neural models. [15]

Another pivotal consideration is model architecture [16]. Transformer-based encoders have emerged
as a de facto choice for numerous language processing tasks, owing to their self-attention mechanism that
effectively captures long-range dependencies. However, in the realm of medical text, these architectures
can be prone to overfitting if pretrained only on general corpora such as Wikipedia or Common Crawl
[17]. Fine-tuning on domain-specific corpora like PubMed abstracts or clinical notes from specialized
repositories often mitigates this mismatch. Let E ∈ R𝑑×𝑛 represent the token embeddings of a clinical
sentence, where 𝑑 is the dimensionality of each token embedding and 𝑛 is the sentence length. The
Transformer computes self-attention weights via [18]

Attention(Q,K,V) = softmax
(QK⊤
√
𝑑

)
V,

where Q = W𝑄E, K = W𝐾E, and V = W𝑉E are learned parameter matrices. This mechanism
refines token-level interactions, capturing cross-dependencies such as medical abbreviations resolving
to expanded forms, or context cues that shift the interpretation of a particular medical condition.
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The remainder of this paper is structured to delve deeper into these considerations, culminating in
a detailed analysis of how contrastive learning for clinical sentence similarity can be both empirically
robust and theoretically justifiable [19]. In the subsequent sections, we outline the foundational principles
of medical language understanding, introduce our proposed contrastive learning approach, present our
experimental results on a variety of real-world clinical corpora, and finally analyze the theoretical
underpinnings of sentence encoding within this domain. The overarching objective is to move toward
a more nuanced and faithful computational representation of medical discourse, thereby advancing the
capabilities of automated question answering in healthcare contexts. [20]

2. Foundations of Medical Language Understanding

Technical progress in medical language understanding has been propelled by innovations in both lin-
guistic representations and neural network architectures. A key driver of these advances has been the
recognition that natural language in a clinical setting follows complex contextual and structural norms
[21]. These norms guide how diagnoses, treatments, and outcomes are reported, aggregated, or cross-
referenced. To navigate these norms effectively, models must handle phenomenon such as abbreviation
resolution, domain-specific entity recognition, and the interplay between domain-agnostic linguistic
features and domain-centric conceptual frameworks. [22, 23]

The concept of layered linguistic representation often underpins modern approaches. If we let 𝑥
denote a clinical sentence, it can be decomposed into tokens 𝑥 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) [24]. Each token 𝑤𝑖
may correspond to a medical entity (e.g., a drug name) or a descriptive term (e.g., an adjective describing
a symptom). Embeddings typically map 𝑤𝑖 to a vector e𝑖 ∈ R𝑑 . Simple word embeddings might treat
e𝑖 as a static lookup from a large vocabulary. However, context-sensitive embeddings use surrounding
words to refine each e𝑖 . For example, consider a sentence describing a patient’s “BP,” which might stand
for “blood pressure” or “bipolar disorder” depending on context [25]. Let 𝐶 (𝑤𝑖) represent the set of
context words for 𝑤𝑖 . A context-aware embedding function h(𝑤𝑖 , 𝐶 (𝑤𝑖)) must assign distinct internal
representations based on how “BP” is used in the sentence.

Efforts to capture domain-specific knowledge have included specialized embeddings such as
BioWordVec, SciBERT, and ClinicalBERT, which incorporate text from biomedical papers and clinical
notes [26]. Such models attempt to ground tokens in both linguistic and medical ontological frame-
works. For instance, “diabetic ketoacidosis” might be recognized as a term highly correlated with insulin
deficiency and blood glucose measurements [27]. Let v be the embedding vector for “diabetic ketoaci-
dosis,” and let r be an embedding vector for an insulin-related concept. A measure of similarity ⟨v, r⟩
might indicate the conceptual closeness of these medical expressions, informing downstream tasks such
as question answering where user queries about diabetic emergencies should retrieve relevant passages
containing “diabetic ketoacidosis.”

From a theoretical standpoint, the representation space can be viewed as a manifold where semanti-
cally related tokens or sentences cluster. In the broader context of question answering, the objective is
to retrieve the correct cluster or region of the manifold that best matches a given query [28]. Logical
formalisms often describe this process in terms of inference rules. Let 𝜙 be a logical formula denoting
a set of clinical assertions, and let 𝜓 be a user query that must be resolved against these assertions [29].
One might say 𝜙 |= 𝜓 if 𝜓 logically follows from 𝜙. Translating this into an embedding-based paradigm,
the question becomes whether the vector representations of 𝜙 and 𝜓 align to a degree exceeding a
predetermined threshold. [30]

The question of how to optimize these embeddings remains central [31]. Gradient-based methods,
particularly those derived from backpropagation through large neural architectures, have shown sub-
stantial performance gains. However, large-scale training on clinical corpora is often constrained by
data availability, confidentiality requirements, and the risk of overfitting if the corpus is not sufficiently
diverse [32]. Consequently, data augmentation and semi-supervised strategies have become popular,
whereby unlabeled clinical texts are used to refine representations via self-supervised tasks. These tasks
might include masked language modeling, in which a fraction of tokens is randomly masked and the
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model is trained to predict them, or next-sentence prediction, which encourages an understanding of
sentence-level coherence. [33]

A challenge that emerges in domain adaptation is how to handle distributional shifts. The textual data
found in clinical settings can be drastically different from that in open-domain corpora [34]. Formal
logic statements sometimes help clarify the constraints: let 𝐷𝑔 be the general domain data distribution
and 𝐷𝑐 be the clinical domain distribution. We consider a statement: ∀𝑥 ∈ 𝑋, 𝑃(𝑥 | 𝐷𝑐) ≠ 𝑃(𝑥 | 𝐷𝑔)
[35]. This essentially indicates that probabilities of textual sequences in the clinical domain can differ
significantly from their general-domain counterparts. Models pretrained on 𝐷𝑔 alone can fail to capture
these differences, leading to inaccurate embeddings and suboptimal question answering performance
[36]. Consequently, bridging the gap involves fine-tuning on labeled or unlabeled data from 𝐷𝑐 such
that the learned representation function h𝑐 respects the unique constraints and style of clinical text.

Moreover, the intricacy of medical language understanding extends to capturing phenomena such as
negation. Sentences that differ only by a negation term can map to starkly different semantic interpre-
tations [37]. For example, “The patient does not have pneumonia” and “The patient has pneumonia”
should be mapped to distinct regions in the embedding manifold. This requirement often leads to spe-
cialized modules or training protocols that highlight negation detection and representation [38]. Another
dimension is the handling of numeric values and lab results (e.g., blood glucose levels). A slight differ-
ence in numeric terms can change the entire interpretation of a sentence [39]. Models must be sensitive
to these changes, possibly by maintaining specialized embeddings or gating mechanisms that handle
numeric terms.

The complexities intrinsic to medical language understanding underscore the need for a robust and
flexible framework that can adapt to diverse syntactic, semantic, and pragmatic features [40]. Contrastive
learning, the focus of this paper, is one such framework. By imposing a structured learning objective
that rewards the closeness of semantically aligned sentences and penalizes the proximity of unrelated
ones, contrastive methods can refine the embedding space in a way that is well-suited to the domain’s
complexities [41]. This approach thus sets the stage for enhancing sentence similarity estimation within
medical question answering systems.

3. Contrastive Learning Approaches for Sentence Similarity

Contrastive learning methods revolve around building representations where positive examples are
mapped closely, and negative examples are pushed apart [42]. At its core lies the concept that semantic
similarity must be well-reflected in the geometry of the embedding space. By employing pairs (or
triplets) of sentences, the training algorithm iterates through examples where lexical and semantic
similarities are known, incrementally shaping the embedding model to respect these relationships in a
consistent manner. [43]

Let (𝑥𝑖 , 𝑦𝑖) be a pair of clinically similar sentences, and let (𝑥𝑖 , 𝑧𝑖) be a pair of clinically dissimilar
sentences [44]. We define a contrastive loss L that draws together the representations of 𝑥𝑖 and 𝑦𝑖 while
repelling 𝑥𝑖 and 𝑧𝑖 . A typical form of the loss function includes a term such as

log
exp(sim(h(𝑥𝑖), h(𝑦𝑖)))

exp(sim(h(𝑥𝑖), h(𝑦𝑖))) + exp(sim(h(𝑥𝑖), h(𝑧𝑖)))
.

Here, sim(·, ·) might be a dot product or cosine similarity. Such a log-softmax expression encourages
the model to assign a higher similarity to positive pairs than to negative pairs [45]. Variations of
this approach include temperature scaling, which adjusts the “sharpness” of the output distribution, or
multiple negative sampling strategies that use large sets of negative examples.

In the context of medical question answering, collecting positive sentence pairs often involves
leveraging expert-annotated datasets [46]. For instance, questions and their official reference answers
can form the positive pairs, while random sentences from the corpus can function as negative examples.
Alternatively, some negative examples can be sampled from domain-specific confounders, ensuring
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that they are not trivially unrelated but pose a legitimate semantic challenge [47]. Suppose (𝑞𝑖 , 𝑎𝑖) is a
question-answer pair deemed correct, and 𝑎 𝑗 is an answer to another question but shares lexical overlap
with 𝑎𝑖 . Then (𝑞𝑖 , 𝑎 𝑗 ) might serve as a hard negative pair, forcing the model to differentiate subtle
domain shifts. [48]

These approaches often rely on specialized encoders, frequently adapted from large pretrained models
such as BERT, to generate embeddings for sentences. A forward pass through such a model transforms a
medical sentence 𝑠 into a high-dimensional representation h(𝑠). Contrastive learning iteratively refines
this encoder based on the proximity or distance of relevant pairs [49]. From a functional perspective,
consider that h : S → R𝑑 . The training aims to ensure that, for all relevant pairs (𝑠1, 𝑠2), the induced
metric 𝑑 (h(𝑠1), h(𝑠2)) is small if they express the same concept, and large otherwise. Formally, one
might define a rule:

∀𝑠1, 𝑠2 ∈ S,
{

SemanticMatch(𝑠1, 𝑠2) ⇒ 𝑑
(
h(𝑠1), h(𝑠2)

)
< 𝛾1,

¬SemanticMatch(𝑠1, 𝑠2) ⇒ 𝑑
(
h(𝑠1), h(𝑠2)

)
> 𝛾2.

where 𝛾1 and 𝛾2 are thresholds controlling how close or distant the pairs should be. [50]
Once trained, such contrastive encoders can be deployed in question answering pipelines to quickly

locate relevant sections of large clinical corpora. Given a new question 𝑞, we compute h(𝑞), then
retrieve candidate answers whose embeddings h(𝑎) exhibit a high similarity with h(𝑞). By narrowing
the search space, the system can achieve rapid and accurate retrieval, which is critical in time-sensitive
environments like clinical decision support [51]. Additional ranking layers or verification strategies may
then refine these candidate answers based on domain-specific heuristics, but the initial embedding-based
retrieval is often a crucial bottleneck.

Some advanced variants of contrastive learning address data scarcity or domain mismatch challenges
by integrating data augmentation or multi-task objectives [52]. For example, Mixup techniques might
mix embeddings of two sentences to generate “interpolated” training examples. Though rarely explored
in general text domains, this approach can be especially beneficial in medical text due to the high
cost of labeled data [53]. Another strategy is to blend contrastive objectives with a masked language
modeling objective, thereby balancing the benefits of local token-level supervision and global sentence-
level supervision. Let Lmask denote the loss from masked language modeling, and let Lcont denote the
contrastive loss. A multi-objective approach might optimize [54]

Ltotal = 𝜆Lcont + (1 − 𝜆)Lmask,

where 𝜆 is a scalar hyperparameter. This not only aligns sentences at the embedding level but also
ensures robust token representations that generalize well to various downstream tasks. [55]

The success of contrastive learning also depends on hyperparameter tuning, such as the size of
the mini-batch, the choice of negative sampling strategy, and the dimensionality of the final sentence
representation. Medical text, often replete with domain-specific expressions, might benefit from large
mini-batches containing diverse examples of medical terminology [56]. Meanwhile, carefully curated
negative examples help the model learn fine-grained distinctions. For instance, the phrase “Type I
diabetes” and “Type II diabetes” share a large lexical overlap but differ in pathophysiology [57]. Handling
such near-duplicate pairs in the training data ensures the encoder remains discriminative even among
closely related medical terms. [58]

In summary, contrastive learning stands out for its ability to produce sentence representations that
capture domain-sensitive nuances with minimal reliance on explicit labeling strategies. Its versatility,
when integrated with the complexities of medical text, paves the way for more accurate sentence
similarity estimation in question answering systems [59]. The method’s success draws from meticulous
selection of positive and negative pairs, strategic model architecture design, and appropriate data
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augmentation practices. The following sections will detail how this approach is operationalized in real-
world clinical datasets, evaluate its performance against robust baselines, and offer deeper insights into
the theoretical aspects of embedding-based similarity estimation. [60]

4. Experimental Setup and Results

The empirical evaluation aimed to measure the efficacy of our contrastive learning framework in accu-
rately predicting semantic similarity of clinical sentences for question answering tasks. We assembled
a multi-faceted dataset comprising pairs of questions and reference answers, each annotated by medical
experts [61]. These annotated pairs provided ground-truth labels indicative of the sentences’ seman-
tic alignments. The dataset also included negative pairs, carefully curated to ensure a range of lexical
overlaps, thus posing a substantive challenge to naive methods. [62]

We selected two broad categories of question-answer pairs. The first category, labeled “Diagnostic
Queries,” contained questions about symptoms, possible diagnoses, and suggested tests [63]. Typical
queries in this category took forms like, “What is the recommended evaluation for a patient presenting
with chest pain?” The second category, labeled “Treatment Queries,” encompassed questions on rec-
ommended drugs, dosing guidelines, and outcome predictions for various medical conditions. These
included questions such as, “Which medications are indicated for acute bronchitis?” or “What is the
optimal dosage of drug X in pediatric cases?” Both categories spanned a wide range of synonyms,
abbreviations, and polyequivalences found in medical texts. [64]

The data preparation phase involved splitting the corpus into training, validation, and test sets.
For each question 𝑞, we designated an official correct answer 𝑎+ to form a positive pair [65]. We
randomly sampled an incorrect or contextually distant answer 𝑎− to form a negative pair. Hard negative
examples were included by selecting answers that overlapped lexically with 𝑎+ but addressed a different
medical question [66]. Let LexOverlap(𝑎+, 𝑎−) denote the ratio of matching terms between 𝑎+ and 𝑎− .
Hard negatives had LexOverlap(𝑎+, 𝑎−) above a specific threshold yet were semantically distinct. This
arrangement yielded a set of high-complexity pairs crucial for training a robust model.

We based our model on a Transformer encoder pretrained on a general medical corpus [67]. Let Θ
represent the model parameters. For each training instance, we computed h(𝑞), h(𝑎+), and h(𝑎−). The
loss function combined a contrastive objective with a temperature term, given by [68]

L(Θ) = −
∑︁

log
exp(sim(h(𝑞), h(𝑎+))/𝜏)

exp(sim(h(𝑞), h(𝑎+))/𝜏) + exp(sim(h(𝑞), h(𝑎−))/𝜏) ,

where 𝜏 is a temperature hyperparameter and sim(·, ·) is the cosine similarity. The model was trained
via stochastic gradient descent with a batch size that included an equal number of positive and negative
examples. Validation runs were used to tune hyperparameters such as learning rate, batch size, and 𝜏.
[69]

Testing involved evaluating sentence similarity via the trained model on unseen question-answer pairs.
We measured performance using precision at 𝑘 (where 𝑘 ranged from 1 to 10) and Mean Reciprocal
Rank (MRR) [70]. The system was tasked with retrieving the correct answer 𝑎+ for each question 𝑞

from a set of 𝑀 candidate answers, where 𝑀 included both random and hard negatives [71]. Formally,
if 𝑎+

𝑖
denotes the correct answer for question 𝑞𝑖 , and the system ranks this answer at position 𝑟𝑖 , the

reciprocal rank is 1/𝑟𝑖 . The MRR is then [72]

MRR =
1
𝑁

𝑁∑︁
𝑖=1

1
𝑟𝑖
,

where 𝑁 is the total number of test queries. A higher MRR signifies that correct answers generally
appear near the top of the candidate list [73]. Precision at 𝑘 tracks how many correct answers are found
in the top 𝑘 results.
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Results demonstrated a marked improvement over standard embeddings such as a generic BERT
model not fine-tuned for clinical text [74]. The contrastive model achieved an MRR of 0.82 for Diagnostic
Queries and 0.86 for Treatment Queries, compared to 0.69 and 0.74, respectively, for the baseline.
Precision at 1 was also notably higher, indicating that the first-ranked answer was correct a larger
proportion of the time when using the contrastive embeddings [75]. This underscores the framework’s
ability to discriminate subtle domain differences, particularly in the presence of near-duplicate hard
negatives.

Moreover, the results shed light on the efficacy of domain adaptation [76]. Models pretrained on
medical text generally outperformed those pretrained solely on open-domain corpora, underscoring the
domain mismatch phenomenon. An additional experiment evaluating the effect of adding unlabeled
clinical notes to the pretraining data revealed further improvements [77]. The representation captured
more fine-grained associations among medical terms, leading to a statistically significant increase in
retrieval accuracy. Specifically, we observed an MRR increase of approximately 2.4

ΔMRR ∝
√︁
|Datain_domain |.

As the quantity of in-domain data grew, the marginal gains diminished, a phenomenon akin to the
diminishing returns seen in general natural language processing tasks.

We also investigated the role of hyperparameter 𝜏 in controlling the softness of the contrastive
distribution [78]. Too large a 𝜏 led to over-smoothing, while too small a 𝜏 caused unstable gradients.
Optimal values for 𝜏 fell within the range [0.05, 0.1], balancing the need for discriminating subtle
differences in sentence meaning with stable training convergence [79]. Similarly, we explored different
dimensionalities 𝑑 for the final sentence embeddings. The best performance emerged at 𝑑 = 768, which
aligns with many Transformer-based architectures. [80]

Ablation studies attempted to clarify the importance of hard negatives. Removing them and relying
solely on random negatives reduced MRR by around 3-4

Overall, these results validate the proposed approach, establishing that contrastive learning can drive
meaningful gains in clinical sentence similarity estimation. By systematically moving correct question-
answer pairs closer and pushing unrelated pairs apart, the framework achieves robust performance
across diverse query types [81]. The next section delves into theoretical underpinnings that clarify why
contrastive learning is particularly well-suited to capturing the manifold geometry of medical sentence
embeddings. [82]

5. Theoretical Analysis of Sentence Encoding

The theoretical foundation for using contrastive learning in sentence embedding hinges on geometric
principles in high-dimensional vector spaces. Medical texts, although idiosyncratic, can be viewed
through the lens of manifold learning: semantically similar sentences are hypothesized to lie close to each
other on a manifold embedded in R𝑑 . Contrastive learning imposes a structured penalty that reshapes
this manifold to separate classes or clusters of sentences [83]. One can formalize this via topological
and spectral arguments, illustrating how a properly tuned contrastive objective encourages favorable
manifold properties, such as uniform coverage of valid semantic regions and distinct separations for
dissimilar areas.

Consider an embedding function h : S → R𝑑 . Let M ⊂ R𝑑 be the manifold that contains images of
clinical sentences under h. For a given semantic concept 𝐶, define M𝐶 = {h(𝑠) | 𝑠 ∈ S, Sem(𝑠) = 𝐶},
where Sem(𝑠) = 𝐶 indicates that sentence 𝑠 encodes the concept 𝐶. Contrastive learning drives
embeddings that keep each M𝐶 as a compact submanifold and pushes it away from other submanifolds
M𝐶′ where 𝐶′ ≠ 𝐶. This separation can be cast in terms of the geodesic distance on M. That is, if
𝑑M denotes the intrinsic distance on M, we aim for 𝑑M (h(𝑠1), h(𝑠2)) to be small for 𝑠1, 𝑠2 that share
a concept and large otherwise.
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Analyses of neural encoders often turn to Lipschitz continuity to bound how small changes in input
textual tokens affect the resulting embeddings [84]. If h is 𝐿-Lipschitz, it satisfies:

∥h(𝑠1) − h(𝑠2)∥ ≤ 𝐿 disttoken (𝑠1, 𝑠2),

where disttoken (·, ·) measures some token-level edit or semantic distance. Contrastive learning, by
enforcing margin constraints or distributional constraints, effectively places bounds on ∥h(𝑠1) − h(𝑠2)∥
for various classes of sentence pairs. Through repeated gradient updates, it refines h to lower 𝐿 in
regions that correspond to frequent medical concepts, ensuring stable local neighborhoods.

A further perspective comes from spectral analysis of the Jacobian of h. When h is parameterized
by a deep neural network, consider the singular values of the Jacobian 𝐽h (𝑠). These values govern how
stretching or compression in the input space is reflected in the output space. Minimizing a contrastive loss
that punishes contradictory pairwise relationships can be interpreted as controlling the largest singular
value, thereby limiting how drastically embeddings can move in response to small differences in input
[85]. This ensures more uniform geometry. At the same time, the network retains enough expressive
power to separate truly distinct concepts. [86]

In specialized domains like clinical medicine, sentences often cluster by pathology, treatment, or
physiological measurements. One can define a set of equivalence relations among sentences: let 𝑠1 ∼E 𝑠2
denote that 𝑠1 and 𝑠2 belong to the same medical concept equivalence class E. For example, “high blood
pressure” may be considered semantically equivalent to “elevated BP.” A well-trained contrastive model
attempts to encode ∼E as an equivalence relation in R𝑑 , meaning that h(𝑠1) and h(𝑠2) are neighbors if
𝑠1 ∼E 𝑠2. The required property is: [87]

𝑠1 ∼E 𝑠2 =⇒ ∥h(𝑠1) − h(𝑠2)∥ ≤ 𝜖

for some 𝜖 > 0. Conversely, if 𝑠1 and 𝑠2 relate to different equivalences, the model tries to ensure [88]

𝑠1 ≁E 𝑠2 =⇒ ∥h(𝑠1) − h(𝑠2)∥ ≥ 𝛿,

for some 𝛿 > 0 with 𝛿 > 𝜖 . Contrastive losses serve as a computational proxy for these idealized
constraints [89]. Although they cannot be perfectly enforced for all possible sentences, the repeated
sampling of positive and negative pairs in training data approximates the coverage of crucial equivalence
relations within medical language.

Another core element is the interpretability of these geometry-based constraints [90]. If the embed-
ding space is well-structured, local neighborhoods can be consistently interpreted in terms of domain
concepts. One might say that a local ball 𝐵(h(𝑠1), 𝑟) in R𝑑 contains primarily sentences that correspond
to the same or closely related medical concepts. This property underpins efficient retrieval: a near-
est neighbor search for question embeddings can swiftly locate semantically appropriate answers [91].
Logic-based frameworks also dovetail with this perspective by linking the notion of semantic entailment
to distance metrics. Under certain assumptions, an embedding-based method might represent entailment
|= as a containment relation between neighborhoods. [92]

Finally, from a complexity-theoretic standpoint, training such models is not trivial. The gradient-
based updates must navigate a high-dimensional parameter space [93]. Although a rigorous proof of
convergence in non-convex settings remains elusive, empirical evidence and partial theoretical argu-
ments support the conclusion that repeated exposure to diverse positive and negative pairs systematically
shapes h. One may argue that for large-scale training data drawn from the true distribution of medical
sentences, the model eventually learns a stable manifold separation that generalizes effectively to new
queries. The success of the approach in practice, as described in prior sections, provides evidence of
these manifold assumptions holding to a satisfactory extent. [94]

These theoretical insights offer a deeper understanding of why contrastive learning is particularly
adept at capturing the complexities of medical sentence embeddings [95]. The interplay between
geometric constraints, Lipschitz regularity, and domain-specific equivalence relations culminates in an
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embedding space supportive of high-performing question answering. Given the synergy between theory
and practice demonstrated, we now turn our attention to summarizing the key contributions and potential
future directions. [96]

6. Conclusion

In this paper, we presented a deep exploration into the role of contrastive learning for estimating clinical
sentence similarity in medical question answering systems. By focusing on domain-specific subtleties
such as specialized abbreviations, negation handling, and context-sensitive interpretations of medical
terminology, we constructed an embedding space conducive to accurate query-to-answer matching [97].
The central premise was that contrastive objectives, which inherently reward proximity for semantically
aligned sentence pairs and enforce distance for unrelated pairs, can yield robust embeddings despite the
inherent noise and complexity of clinical text.

We began with a discussion of the essential challenges in medical language understanding, empha-
sizing the unique properties of clinical narratives that set them apart from general-domain corpora [98].
These include the prevalence of partial or inconsistent data, the sensitivity of numeric values and mea-
surements, and the high stakes associated with misinterpretations in a healthcare environment. We then
explored the structural framework of contrastive learning, detailing how margin-based or log-based
objectives guide the model toward nuanced discrimination of sentence semantics [99]. Empirical evalu-
ations on a variety of clinical question-answer datasets affirmed the potential of this approach, showing
substantial gains in metrics like Mean Reciprocal Rank and precision at 𝑘 over baseline methods.
Notably, experiments confirmed that domain-adaptive pretraining and the strategic use of hard negative
examples were instrumental in driving performance improvements. [100, 101]

We additionally highlighted theoretical considerations, framing medical sentence embeddings in
terms of manifold geometry, Lipschitz continuity, and logical equivalence relations. These formula-
tions demystified some of the mechanics by which contrastive learning shapes the embedding space,
underscoring the importance of local neighborhood structures in capturing subtle distinctions among
clinical concepts [102]. While the formal proofs of convergence in non-convex neural network train-
ing remain out of reach, empirical evidence and partial analyses provide strong support that repeated
exposure to semantically aligned and unaligned sentence pairs can effectively reorganize the manifold
of representations to reflect domain-specific concepts.

Looking forward, there are multiple avenues for advancing the techniques discussed here [103].
One direction involves refining the construction of hard negative examples by incorporating knowledge
graphs or specialized ontologies that systematically identify near-synonyms or closely related conditions.
Another direction is to explore multi-lingual medical corpora, expanding the application of contrastive
learning to globally diverse healthcare contexts [104]. Because the medical domain often spans multiple
languages and regions, bridging these linguistic gaps could significantly broaden the utility of question
answering systems. A third direction involves the integration of structured data sources like lab measure-
ments and imaging results, fusing textual embeddings with multimodal inputs to formulate even richer
representations [105]. The potential benefits range from improved specificity in question answering to
the discovery of latent correlations between text, lab findings, and clinical outcomes.

Lastly, ethical and privacy considerations remain an overarching concern in clinical NLP [106].
The processes for collecting, annotating, and sharing patient data require rigorous adherence to confi-
dentiality standards. Any practical system must incorporate data de-identification and anonymization
protocols, potentially limiting the data available for model pretraining [107]. Nevertheless, the modular
nature of contrastive learning frameworks can accommodate these constraints by tailoring objectives to
partially labeled or masked datasets.

In summary, the methodological, empirical, and theoretical insights gleaned from this work collec-
tively underscore the viability of contrastive learning for clinical sentence similarity estimation [108].
Through the lens of both experimental outcomes and analytic reasoning, we have demonstrated how
mapping semantically related sentences to close-by representations yields tangible performance benefits
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for medical question answering. We anticipate that continued research in contrastive methods, especially
when integrated with emerging multi-modal and knowledge graph capabilities, will further enhance the
fidelity and practicality of intelligent systems in healthcare. [109]
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